已知函数。
(1)求的最小正周期和单调递增区间;
(2)将按向量
平移后图像关于原点对称,求当
最小时的
。
已知分别是空间四边形
的边
上的点,
且四边形是平行四边形,求证:
平面
,
平面
.
![]() |
如图ABCD—A1B1C1D1是正四棱柱,侧棱长为1,底面边长为2,E是棱BC的中点.
(1)求三棱锥D1—DBC的体积;
(2)证明BD1∥平面C1DE;
(3)求面C1DE与面CDE所成二面角的正切值.
如图,已知ABCD是矩形,E是以CD为直径的半圆周上一点,且面CDE⊥面ABCD.
求证:CE⊥平面ADE.
正方体ABCD—A1B1C1D1中,E、F、G分别是棱DA、DC、DD1的中点,试找出过正方体的三个顶点且与平面EFG平行的平面,并证明.
如图,已知三棱锥P-ABC中,PA、PB、PC与底面ABC成相等的角,∠CAB=90°,AC=AB,D为BC的中点,E点在PB上,PC∥截面EAD.
(1)求证:平面PBC⊥底面ABC.
(2)若AB=PB,求AE与底面ABC所成角的正弦值.