已知抛物线L;y=ax2+bx+c(其中a、b、c都不等于0), 它的顶点P的坐标是,与y轴的交点是M(0,c)我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的关系式:
伴随抛物线的关系式_________________
伴随直线的关系式___________________
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y="-x-3," 则这条抛物线的关系是___________:
(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0) 的伴随抛物线和伴随直线的关系式;
(4)若抛物线L与x轴交于A(x1,0),B(x2,0)两点x2>x1>0,它的伴随抛物线与x 轴交于C,D两点,且AB=CD,请求出a、b、c应满足的条件.
是三个连续的正整数
,以b为边长作正方形,分别以c,
为长和宽作长方形,哪个图形的面积大?为什么?
推理填空,如图
1、如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.
解:∵∠A=∠F(已知)
∴AC∥DF()
∴∠D=∠( )
又∵∠C=∠D(已知)
∴∠1=∠C(等量代换)
∴BD∥CE( )
作图题(尺规作图,不写作法,但保留作图痕迹)
如图,已知,∠α 、∠β。
求作∠AOB,使∠AOB =2∠α+∠β,
先化简,再求值:,其中
正方形ABCD中,E点为BC中点,连接AE,过B点作BF⊥AE,交CD于F点,交AE于G点,连接GD,过A点作AH⊥GD交GD于H点.
(1) 求证:△ABE≌△BCF;
(2) 若正方形边长为4,AH =,求△AGD的面积.