在如图的方格纸中(每个小方格的边长都是1个单位)有一点和
.
(1)请以点为位似中心,把
缩小为原来的一半(不改变方向),得到
.
(2)请用适当的方式描述的顶点
,
,
的位置.
如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:点E是边BC的中点;
(2)若EC=3,BD=
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.
定理:若、
是关于
的一元二次方程
的两实根,则有
,
.请用这一定理解决问题:已知
、
是关于
的一元二次方程
的两实根,且
,求
的值.
(本小题8分)
我省课改实验区于2005年起实行初中毕业生综合素质评价,结果分为A,B,C,D四个等级。我省某区教育局为了解评价情况,从全区3600名初三毕业生中任意抽取了200名学生的评价结果进行统计,得到如图所示扇形统计图:
根据图中提供的信息,(1)请你求出样本中评定为D等级的学生占样本人数的百分之几?有多少人?
(2)请你说明样本中众数落在哪一个等级?估计该区初三毕业生中众数所在等级的总人数大约是多少?
一个不透明的口袋里装着红、黄、绿三种只有颜色不同的球,其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为.
(1)试求袋中绿球的个数;
(2)第1次从袋中任意摸出l球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.
如图,在矩形ABCD中,AB=3cm,AD=4cm,点E是BC上一动点(不与B、C重合),且DF⊥AE,垂足为F. 设AE=xcm,DF=ycm.(1)求证:△DFA∽△ABE;
(2)试求y与x之间的函数关系式,并求出自变量的取值范围.