游客
题文

3-(+63)-(-259)-(-41)+(-40)

科目 数学   题型 解答题   难度 容易
知识点: 幂的乘方与积的乘方
登录免费查看答案和解析
相关试题

.如图,将腰长为的等腰Rt△ABC(∠C是直角)放在平面直角坐标系中的第二象限,其中点Ay轴上,点B在抛物线yax2ax-2上,点C的坐标为(-1,0).

(1)点A的坐标为,点B的坐标为
(2)抛物线的关系式为,其顶点坐标为
(3)将三角板ABC绕顶点A逆时针方向旋转90°,到达的位置.请判断点是否在(2)中的抛物线上,并说明理由.

.如图,等腰三角形ABC中,ACBC=6,AB=8.以BC为直径作⊙OAB
D,交AC于点GDFAC,垂足为F,交CB的延长线于点E

(1)求证:直线EF是⊙O的切线;
(2)求sin∠E的值.

阅读下列材料,并解决后面的问题.
在锐角△ABC中,∠A、∠B、∠C的对边分别是abc,过AADBCD(如图),则sinB=sinC=,即AD=csinBAD=bsinC,于是csinB=bsinC,即.同理有:,所以

即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.
根据上述材料,完成下列各题.
(1)如图,△ABC中,∠B=450,∠C=750BC=60,则∠A=AC=

(2)如图,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A的距离AB.

.(本题满分12分) 如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).
①求当t为多少时,四边形PQAB为平行四边形?(4分)
②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式. (4分)
(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标. (4分)

(本小题满分12分)
(1)观察发现
如(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.
做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P
再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为. (2分)

(2)实践运用
如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,求PM+PN的最小值。(5分)

(3)拓展延伸
如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法. (5分)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号