游客
题文

数学活动——“关于三角形全等的条件”
1.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
2.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
3.【逐步探究】
(1)第一种情况:当∠B是直角时,如图①,根据______定理,可得△ABC≌△DEF.

(2)第二种情况:当∠B是钝角时,△ABC≌△DEF仍成立.请你完成证明.
已知:如图②,△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,
求证:△ABC≌△DEF.
证明:
(3)第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)

(4)【深入思考】
∠B还要满足什么条件,就可以使△ABC≌△DEF?(请直接写出结论.)
在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B _________,则△ABC≌△DEF.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

已知,如图,一次函数 y = kx + b ( k b 为常数, k 0 ) 的图象与 x 轴、 y 轴分别交于 A B 两点,且与反比例函数 y = n x ( n 为常数且 n 0 ) 的图象在第二象限交于点 C CD x 轴,垂足为 D ,若 OB = 2 OA = 3 OD = 6

(1)求一次函数与反比例函数的解析式;

(2)求两函数图象的另一个交点坐标;

(3)直接写出不等式: kx + b n x 的解集.

如图,在平面直角坐标系 xOy 中,以点 O 为圆心的圆分别交 x 轴的正半轴于点 M ,交 y 轴的正半轴于点 N .劣弧 MN ̂ 的长为 6 5 π ,直线 y = 4 3 x + 4 x 轴、 y 轴分别交于点 A B

(1)求证:直线 AB O 相切;

(2)求图中所示的阴影部分的面积(结果用 π 表示)

随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元 / 瓶,经过连续两次降价后,现在仅卖98元 / 瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.

如图,方格中,每个小正方形的边长都是单位1, ΔABC 在平面直角坐标系中的位置如图.

(1)画出将 ΔABC 向右平移2个单位得到△ A 1 B 1 C 1

(2)画出将 ΔABC 绕点 O 顺时针方向旋转 90 ° 得到的△ A 2 B 2 C 2

(3)求△ A 1 B 1 C 1 与△ A 2 B 2 C 2 重合部分的面积.

为了解中考考生最喜欢做哪种类型的英语客观题,2015年志愿者奔赴全市中考各考点对英语客观题的“听力部分、单项选择、完型填空、阅读理解、口语应用”进行了问卷调查,要求每位考生都自主选择其中一个类型,为此随机调查了各考点部分考生的意向.并将调查结果绘制成如图的统计图表(问卷回收率为 100 % ,并均为有效问卷).

被调查考生选择意向统计表

题型

所占百分比

听力部分

a

单项选择

35 %

完型填空

b

阅读理解

10 %

口语应用

c

根据统计图表中的信息,解答下列问题:

(1)求本次被调查的考生总人数及 a b c 的值;

(2)将条形统计图补充完整;

(3)全市参加这次中考的考生共有42000人,试估计全市考生中最喜欢做“单项选择”这类客观题的考生有多少人?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号