金银花自古被誉为清热解毒的良药,同时也是很多高级饮料的常用原料.“渝蕾一号”为重庆市中药研究院所选育的金银花优良品种,较传统金银花具有质量好、产量高、结蕾整齐等优点.某花农于前年引进一批“渝蕾一号”金银花种苗进行种植,去年第一次收获.因金银花入药或作饮料需要使用干燥花蕾,该花农将收获的新鲜金银花全部干燥成干花蕾后出售.根据经验,每亩鲜花蕾产量(千克)与每亩种苗数
(株)满足关系式:
,每亩成本
(元)与每亩种苗数
(株)之间的函数关系满足下表:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,求出与
的函数关系式;
(2)若该品种金银花的折干率为20%(即每100千克鲜花蕾,干燥后可得20千克干花蕾),去年每千克干花蕾售价为200元,则当每亩种苗数为多少时,每亩销售利润
可获得最大值,并求出该最大利润;(利润=收入
成本)
(3)若该花农按照(2)中获得最大利润的方案种植,并不断改善养植技术,今年每亩鲜花蕾产量比去年增加%.但由于市场上同类产品数量猛增,造成每千克干花蕾的售价比去年降低
%,结果今年每亩销售总额为45810元.请你参考以下数据,估算出
的整数值(
).
(参考数据:,
,
,
)
解不等式组:.
如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B重合),分别连接ED、EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,我们就把点E叫做四边形ABCD的AB边上的强相似点.
(1)若图1中,∠A=∠B=∠DEC=50°,说明点E是四边形ABCD的AB边上的相似点;
(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明.)
②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.
(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是梯形ABCD的AB边上的一个强相似点,判断AE与BE的数量关系并说明理由.
如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,且与OA交于点E、与OB交于点F,连接CE、CF.
(1)AB与⊙O相切吗,为什么?
(2)若∠AOB=∠ECF,试判断四边形OECF的形状,并说明理由.
施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系
(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;
(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明.
小林家、小华家与图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟.设两人出发x(分钟)后,小林离小华家的距离为y(米),y与x的函数关系如图所示.
(1)小林的速度为米/分钟,a=,小林家离图书馆的距离为米;
(2)已知小华的步行速度是40米/分钟,设小华步行时与家的距离为y1(米),请在图中画出y1(米)与x(分钟)的函数图象;
(3)小华出发几分钟后两人在途中相遇?