金银花自古被誉为清热解毒的良药,同时也是很多高级饮料的常用原料.“渝蕾一号”为重庆市中药研究院所选育的金银花优良品种,较传统金银花具有质量好、产量高、结蕾整齐等优点.某花农于前年引进一批“渝蕾一号”金银花种苗进行种植,去年第一次收获.因金银花入药或作饮料需要使用干燥花蕾,该花农将收获的新鲜金银花全部干燥成干花蕾后出售.根据经验,每亩鲜花蕾产量(千克)与每亩种苗数
(株)满足关系式:
,每亩成本
(元)与每亩种苗数
(株)之间的函数关系满足下表:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,求出与
的函数关系式;
(2)若该品种金银花的折干率为20%(即每100千克鲜花蕾,干燥后可得20千克干花蕾),去年每千克干花蕾售价为200元,则当每亩种苗数为多少时,每亩销售利润
可获得最大值,并求出该最大利润;(利润=收入
成本)
(3)若该花农按照(2)中获得最大利润的方案种植,并不断改善养植技术,今年每亩鲜花蕾产量比去年增加%.但由于市场上同类产品数量猛增,造成每千克干花蕾的售价比去年降低
%,结果今年每亩销售总额为45810元.请你参考以下数据,估算出
的整数值(
).
(参考数据:,
,
,
)
已知二次函数的图象C1与x轴有且只有一个公共点.
(1)求C1的顶点坐标;
(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(—3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;
(3)若的取值范围.
在直角坐标系xOy中,直线l过(1,3)和(3,1)两点,且与x轴,y轴分别交于A,B两点.
(1)求直线l的函数关系式;
(2)求△AOB的面积.
(本小题满分6分)
在如图所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.
(1)作出△ABC关于y轴对称的△A1B1C1,其中A,B,C分别和A1,B1,C1对应;
(2)平移△ABC,使得A点在x轴上,B点在y轴上,平移后的三角形记为△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分别和A2,B2,C2对应;
(3)填空:在(2)中,设原△ABC的外心为M,△A2B2C2的外心为M,则M与M2之间的距离为.
推理证明(本小题满分6分)
如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.
(1)求证:△ABC≌△ADE;
(2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求旋转角的大小.
运算求解(本小题满分10分)
解方程或不等式组;
(1)
(2)