游客
题文

解方程:
(1)  (2)  (3)

科目 数学   题型 解答题   难度 较易
知识点: 一元二次方程的最值
登录免费查看答案和解析
相关试题

在2ABCD中,对角线BD、AC相交于点O,BE=DF,过点O作线段GH交AD于点G,交BC于点H,顺次连接EH、HF、FG、GE,求证:四边形EHFG是平行四边形。

解关于的方程

(其中为常数)

计算


问题背景:
如图1,矩形铁片ABCD的长为2a,宽为a; 为了要让铁片能穿过直径为的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);

探究发现:
如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是 _______,给出证明,并通过计算说明此时铁片都能穿过圆孔;

拓展迁移:
如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片;

①当BE=DF=时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由;
②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围 .

四边形ABCD是平行四边形,AB=3,AD= 5,高DE=2.建立如图所示的平面直角坐标系,其中点A与坐标原点O重合.
求BC边所在直线的解析式;
设点F为直线BC与y轴的交点,求经过点B,D,F的抛物线解析式;
判断▱ABCD的对角线的交点G是否在(2)中的抛物线上,并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号