已知:如图①,在中,
,
,
,点
由
出发沿
方向向点
匀速运动,速度为1cm/s;点
由
出发沿
方向向点
匀速运动,速度为2cm/s;连接
.若设运动的时间为
(
),解答下列问题:
(1)当为何值时,
?
(2)设的面积为
(
),求
与
之间的函数关系式;
(3)是否存在某一时刻,使线段
恰好把
的周长和面积同时平分?若存在,求出此时
的值;若不存在,说明理由;
(4)如图②,连接,并把
沿
翻折,得到四边形
,那么是否存在某一时刻
,使四边形
为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
九(3)班“2012年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、 2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.
(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,小芳获奖的概率是.
(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.
两组邻边分别相等的四边形我们称它为筝形.如图,在筝形中,
,
,
,
相交于点
,
(1)求证:①;
②,
;
(2)如果,
,求筝形
的面积.
已知反比例函数和一次函数y=2x-1,其中一次函数的图像经过点(k,5).
(1)求反比例函数的解析式;
(2)若点A在第一象限,且同时在上述两个函数的图象上,求A点的坐标。
两个布袋中分别装有除颜色外,其他都相同的2个白球,1个黑球,同时从这两个布袋中各摸出一个球,请用树状图表示出可能出现的情况,并求出摸出的两球颜色相同的概率。
计算题
(1)(2)
(3)(配方法)(4)
(公式法)
(5)(6)