如图,已知直平行六面体ABCD-A1B1C1D1中,AD⊥BD,AD=BD=a,E是CC1的中点,A1D⊥BE.
(I)求证:A1D⊥平面BDE;
(II)求二面角B―DE―C的大小;
(III)求点B到平面A1DE的距离
已知函数.
(Ⅰ)当时,求曲线
在
处的切线方程;
(Ⅱ)设函数,求函数
的单调区间;
(Ⅲ)若在上存在一点
,使得
<
成立,求
的取值范围.
已知、
分别是椭圆
的左、右焦点,右焦点
到上顶点的距离为2,若
.
(Ⅰ)求此椭圆的方程;
(Ⅱ)点是椭圆的右顶点,直线
与椭圆交于
、
两点(
在第一象限内),又
、
是此椭圆上两点,并且满足
,求证:向量
与
共线.
如图,在四棱锥中,底面
是边长为
的菱形,
,
底面
,
,
为
的中点,
为
的中点.
(Ⅰ)证明:直线平面
;
(Ⅱ)求异面直线与
所成角的大小;
数列{an}中,a1=1,当时,其前n项和满足
.
(Ⅰ)求Sn的表达式;
(Ⅱ)设,数列{bn}的前n项和为
,求
.
已知函数为常数).
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数的单调递增区间;
(Ⅲ)若时,
的最小值为– 2 ,求a的值.