一物体做匀变速直线运动,某时刻速度的大小为4 m/s,1 s后速度大小为10 m/s,在这1 s内该物体的( )
A.位移大小可能小于4 m | B.位移大小可能大于10 m |
C.加速度的大小可能小于4 m/s2 | D.加速度的大小可能大于10 m/s2 |
如图所示,在一次消防演习中,消防员练习使用挂钩从高空沿滑杆由静止滑下,滑杆由AO、OB两段直杆通过光滑转轴连接地O处,可将消防员和挂钩均理想化为质点,且通过O点的瞬间没有机械能的损失。已知AO长L1=5m,OB长L2=10m,两面竖直墙MN的间距d=11m。滑杆A端用铰链固定在墙上,可自由转动。B端用铰链固定在另一侧墙上。为了安全,消防员到达对面墙的速度大小不能超过6m/s,挂钩与两段滑杆间动摩擦因数均为μ=0.8。(sin37°=0.6,cos37°=0.8)
(1)若测得消防员下滑时, OB段与水平方向间的夹角始终为37°,求消防员在两滑杆上运动时加速度的大小及方向;
(2)若B端在竖直墙上的位置可以改变,求滑杆端点A、B间的最大竖直距离。
如图所示,电源内阻r=1Ω,R1=2Ω,R2=6Ω,灯L上标有“3V、1.5W”的字样,当滑动变阻器R3的滑片P移到最右端时,电流表示数为1A,灯L恰能正常发光。
(1)求电源的电动势;
(2)求当P移到最左端时,电流表的示数;
(3)当滑动阻器的Pb段电阻多大时,变阻器R3上消耗的功率最大?最大值多大?
4×100m接力赛是奥运会上最为激烈的比赛项目,有甲乙两运动员在训练交接棒的过程中发现,甲短距离加速后能保持9m/s的速度跑完全程.为了确定乙起跑的时机,需在接力区前适当的位置设置标记,在某次练习中,甲在接力区前s0 处作了标记,当甲跑到此标记时向乙发出起跑口令,乙在接力区的前端听到口令时立即起跑(忽略声音传播的时间及人的反应时间),已知接力区的长度为L=20m,设乙起跑后的运动是匀加速运动,试求:
(1)若s0 =13.5m,且乙恰好在速度达到与甲相同时被甲追上,完成交接棒,则在完成交接棒时乙离接力区末端的距离为多大?
(2)若s0 =16m,乙的最大速度为8m/s,并能以最大速度跑完全程,要使甲乙能在接力区完成交接棒,则乙在听到口令后加速的加速度最大为多少?
如图(甲)所示,两个水平和倾斜光滑直导轨都通过光滑圆弧对接而成,相互平行放置,两导轨相距L=lm,倾斜导轨与水平面成角,倾斜导轨的下面部分处在一垂直斜面的匀强磁场区I中,I区中磁场的磁感应强度B1随时间变化的规律如图(乙)所示垂直斜面向上为正值,图中t1、t2未知。水平导轨足够长,其左端接有理想灵敏电流计G(内阻不计)和定值电阻R=3
,水平导轨处在一竖直向上的匀强磁场区Ⅱ中,Ⅱ区中的磁场恒定不变,磁感应强度大小为B2=1T,在t=0时刻,从斜轨上磁场I区外某处垂直于导轨水平静止释放一金属棒ab,棒的质量m=0.l kg,棒的电阻r=2
,棒下滑时与导轨保持良好接触设棒通过光滑圆弧前后速度大小不变,导轨的电阻不计。若棒在斜面上向下滑动的整个过程中,灵敏电流计指针稳定时显示的电流大小相等,t2时刻进入水平轨道,立刻对棒施一平行于框架平面沿水平且与杆垂直的外力。(g取10m/s2)求:
(1)ab棒进入磁场区I时速度V的大小;
(2)磁场区I在沿斜轨方向上的宽度d;
(3)棒从开始运动到刚好进入水平轨道这段时间内ab棒上产生的热量Q;
(4)若棒在t2时刻进入水平导轨后,电流计G的电流I随时间t变化的关系如图(丙)所示(而未知),已知t2到t3的时间为0.5s,t3到t4的时间为1s,请在图(丁)中作出t2到t4时间内外力大小F随时间t变化的函数图像。(从上向下看逆时针方向为电流正方向)
在动摩擦因数m=0.2的粗糙绝缘足够长的水平滑漕中,长为2L的绝缘轻质细杆两端各连接一个质量均为m的带电小球A和B,如图为俯视图(槽两侧光滑)。A球的电荷量为+2q,B球的电荷量为-3q(均可视为质点,也不考虑两者间相互作用的库仑力)。现让A处于如图所示的有界匀强电场区域MPQN内,已知虚线MP恰位于细杆的中垂线,MP和NQ的距离为3L,匀强电场的场强大小为E=1.2mg/q,方向水平向右。释放带电系统,让A、B从静止开始运动(忽略小球运动中所产生的磁场造成的影响)。求:
(1)小球B第一次到达电场边界MP所用的时间;
(2)小球A第一次离开电场边界NQ时的速度大小
(3)带电系统运动过程中,B球电势能增加量的最大值。