如图所示,匀强磁场B 1 垂直水平光滑金属导轨平面向下,垂直导轨放置的导体棒ab在平行于导轨的外力F作用下做匀加速直线运动,通过两线圈感应出电压,使电压表示数U保持不变。已知变阻器最大阻值为R,且是定值电阻R 2 的三倍,平行金属板MN相距为d。在电场作用下,一个带正电粒子从O 1 由静止开始经O 2 小孔垂直AC边射入第二个匀强磁场区,该磁场的磁感应强度为B 2 ,方向垂直纸面向外,其下边界AD距O 1 O 2 连线的距离为h。已知场强B 2 =B,设带电粒子的电荷量为q、质量为m,则高度
,请注意两线圈绕法,不计粒子重力。求:
(1)试判断拉力F能否为恒力以及F的方向(直接判断);
(2)调节变阻器R的滑动头位于最右端时,MN两板间电场强度多大?
(3)保持电压表示数U不变,调节R的滑动头,带电粒子进入磁场B 2 后都能击中AD边界,求粒子打在AD边界上的落点距A点的距离范围。
【物理—选修3-4】
(1) (6分)如图所示,在xOy平面内有一列沿x轴传播的简谐横波,频率为2.5HZ 。在t=0时,P点位于平衡位置,且速度方向向下,Q点位于平衡位置下方的最大位移处。则在t=0.35s时,P、Q两质点()
| A.位移大小相等,方向相同 |
| B.速度大小相等,方向相同 |
| C.速度大小相等,方向相反 |
| D.加速度大小相等,方向相反 |
(2) (9分)两束平行的细激光束,垂直于半圆柱玻璃的平面射到半圆柱玻璃上,如图所示。已知其中一条光线沿直线穿过玻璃,它的入射点是O;另一条光线的入射点为A,穿过玻璃后两条光线交于P点。已知玻璃截面的圆半径为R,OA=
,OP=
R。求玻璃材料的折射率。
【物理—选修3-3】
(1)在某一密闭容器内装有一定质量的理想气体(设此状态为甲),现设法降低气体的温度同时增大气体的压强,达到状态乙,则下列判断正确的是()
| A.气体在状态甲时的密度比状态乙时的大 |
| B.气体在状态甲时的分子平均动能比状态乙时的大 |
| C.气体在状态甲时的内能比状态乙时的大 |
| D.气体从状态甲变化到状态乙的过程中,放出的热量多于外界对气体做的功 |
(2)如图所示,在一端封闭的U形管中用水银柱封一段空气柱L,当空气柱的温度为14℃时,左臂水银柱的长度h1=10cm,右臂水银柱长度h2=7cm,气柱长度L=15cm;将U形管放入100℃水中且状态稳定时,h1变为7cm。分别写出空气柱在初末两个状态的气体参量,并求出末状态空气柱的压强和当时的大气压强(单位用cmHg)。
如图所示,直线OA与x轴成135°角,x轴上下方分别有水平向右的匀强电场E1和竖直向上的匀强电场E2,且电场强度E1=E2=10N/C,x轴下方还存在垂直于纸面向外的匀强磁场B,磁感应强度B=10T。现有一质量m=1.0×10-5kg,电荷量q=1.0×10-5C的带正电尘粒在OA直线上的A点静止释放,A点离原点O的距离d=
m(g取10m/s2,).求:
(1)尘粒刚进入磁场区域时的速度v的大小;
(2)从进入磁场区域开始到离开磁场区域所经历的时间t;
(3)第一次回到OA直线上的某位置离原点O的距离L。
如图甲所示,竖直平面内的光滑轨道由倾斜直轨道AB和圆轨道BCD组成,AB和BCD相切于B点,CD连线是圆轨道竖直方向的直径(C、D为圆轨道的最低点和最高点),已知
。可视为质点的小滑块从轨道AB上高H处的某点由静止滑下,用压力传感器测出滑块经过圆轨道最高点D时对轨道的压力为F,并得到如图乙所示的压力F与高度H的关系图象,取g=10m/s2。求:
(1)滑块的质量和圆轨道的半径;
(2)是否存在某个H值,使得滑块经过最高点D后能直接落到直轨道AB上与圆心等高的点。若存在,请求出H值;若不存在,请说明理由。
如图甲所示,质量为m=1kg的物体置于倾角为θ=37°的固定且足够长的斜面上,对物体施以平行于斜面向上的拉力F,t1=1s时撤去拉力,物体运动的部分v-t图象如图乙所示。试求:
(1)拉力F的大小;
(2) 物体和斜面的滑动摩擦因数μ的大小。(sin37°=0.6,cos37°=0.8)