如图,已知椭圆的左焦点为
,过点
的直线交椭圆于
两点,线段
的中点为
,
的中垂线与
轴和
轴分别交于
两点.
(1)若点的横坐标为
,求直线
的斜率;
(2)记△的面积为
,△
(
为原点)的面积为
.试问:是否存在直线
,使得
?说明理由.
已知直三棱柱的三视图如图所示,
是
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点
,使
与
成
角?若存在,确定
点位置,若不存在,说明理由.
今年我国部分省市出现了人感染H7N9禽流感确诊病例,各地家禽市场受其影响生意冷清.A市虽未发现H7N9疑似病例,但经抽样有20%的市民表示还会购买本地家禽.现将频率视为概率,解决下列问题:
(Ⅰ)从该市市民中随机抽取3位,求至少有一位市民还会购买本地家禽的概率;
(Ⅱ)从该市市民中随机抽取位,若连续抽取到两位愿意购买本地家禽的市民,或
抽取的人数达到4位,则停止抽取,求的分布列及数学期望.
已知ΔABC中,满足,a,b,c分别是ΔABC的三边。
(1)试判定ΔABC的形状,并求sinA+sinB的取值范围。
(2)若不等式对任意的a,b,c都成立,求实数k的取值范围。
如图,圆与离心率为
的椭圆
(
)相切于点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点引两条互相垂直的两直线
、
与两曲线分别交于点
、
与点
、
(均不重合).
(ⅰ)若为椭圆上任一点,记点
到两直线的距离分别为
、
,求
的最大值;
(ⅱ)若,求
与
的方程.