已知26辆货车以相同速度v由A地驶向400千米处的B地,每两辆货车间距离为d千米,现已知d与v的平方成正比,且当v=20(千米/时)时,d=1(千米).
(1)写出d与v的函数关系;
(2)若不计货车的长度,则26辆货车都到达B地最少需要多少小时?此时货车速度是多少?
选修4—4:坐标系与参数方程
已知直线l:
(t为参数)恒经过椭圆C:
(为参数)的右焦点F.
(Ⅰ)求m的值;
(Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|·|FB|的最大值与最小值.
选修4-1:几何证明选讲
如图,
是
ABC的外接圆,D是
的中点,BD 交AC于E
(1)求证:
:
(2)若
,O到AC的距离为1,求
的半径
已知
,
(Ⅰ)当
时,若
在
上为减函数,
在
上是增函数,求
值;
(Ⅱ)对任意
恒成立,求
的取值范围.
.已知椭圆C的中心在原点,焦点在x轴上,离心率等于
,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P(2,3), Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点,
①若直线AB的斜率为
,求四边形APBQ面积的最大值;
②当A、B运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
如图,四棱锥
中,底面ABCD为菱形,
,Q是AD的中点.
(Ⅰ)若
,求证:平面PQB
平面PAD;
(Ⅱ)若平面APD
平面ABCD,且
,点M在线段PC上,试确定点M的位置,使二面角
的大小为
,并求出
的值.