已知26辆货车以相同速度v由A地驶向400千米处的B地,每两辆货车间距离为d千米,现已知d与v的平方成正比,且当v=20(千米/时)时,d=1(千米).
(1)写出d与v的函数关系;
(2)若不计货车的长度,则26辆货车都到达B地最少需要多少小时?此时货车速度是多少?
(本小题满分12分)已知数列的前
项和为
,
,
,
.
(Ⅰ) 求证:数列是等比数列;
(Ⅱ) 设数列的前
项和为
,
,点
在直线
上,若不等式
对于
恒成立,求实数
的最大值。
(本小题满分12分)如图,在多面体中,底面
是边长为
的的菱形,
,四边形
是矩形,平面
平面
,
,
和
分别是
和
的中点.
(Ⅰ)求证:平面平面
;
(Ⅱ)求二面角的大小.
(本小题满分12分)已知函数在
处取得极值。
(1)求的值;
(2)求证:对任意,都有
(本小题满分12分)已知函数.
(1)若,求函数
的最大值和最小值,并写出相应的
的值;
(2)设的内角
、
、
的对边分别为
,满足
,且
,求
的值.
(本小题满分10分)【选修4-5:不等式选讲】
设函数(
).
(Ⅰ)证明:;
(Ⅱ)若,求
的取值范围.