某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.
(1)该顾客至少可得到 元购物券,至多可得到 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
如图,根据图中数据完成填空,再按要求答题:
sin2A1+sin2B1=; sin2A2+sin2B2=; sin2A3+sin2B3=.
(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=.
(2)如图④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.
(3)已知:∠A+∠B=90°,且sinA=,求sinB.
(本小题满分14分)如图,在平面直角坐标系中,抛物线
过点
(0,4)和
(8,0),P(t,0)是
轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB.过点B作
轴的垂线、过点A作
轴的垂线,两直线相交于点D.
(1)求此抛物线的对称轴;
(2)当为何值时,点D落在抛物线上?
(3)是否存在,使得以A、B、D为顶点的三角形与△PEB相似?若存在,求此时
的值;若不存在,请说明理由.
(本小题满分14分)如本题图①,在△ABC中,已知.过点A作BC的平行线与∠ABC的平分线交于点D,连接CD.
(1)求的大小;
(2)在线段的延长线上取一点
,以
为角的一边作
,另一边交BD延长线于点E, 若、
(如本题图②所示),试求
的值(用含
的代数式表示).
(本小题满分12分)如图,中,
,
.
(1)动手操作:利用尺规作以为直径的⊙
,并标出⊙
与
的交点
,与
的交点
(保留作图痕迹,不写作法).
(2)综合应用:在你所作的圆中,求证:;
(3)求的周长.
已知:关于的一元二次方程:
(
为实数).
(1)若方程有两个不相等的实数根,求的取值范围;
(2)若是此方程的实数根,抛物线
与
轴交于
、
,抛物线的顶点为
,
求的面积.