游客
题文

如图,抛物线y=x2+bx+c与y轴交于点C,与x轴相交于A,B两点,点A的坐标为(2,0),点C的坐标为(0,―4).

(1)求抛物线的解析式;
(2)点Q是线段OB上的动点,过点Q作QE//BC,交AC于点E,连接CQ,设OQ=m,当△CQE的面积最大时,求m的值,并写出点Q的坐标.
(3)若平行于x轴的动直线,与该抛物线交于点P,与直线BC交于点F,D的坐标为(-2,0),则是否存在这样的直线l,使OD=DF?若存在,求出点P的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明得身高为1.6m,求路灯杆AB的高度。

如图,△ABC中,EFBCFDABAE=18,BE=12,CD=14,求线段EF的长.

两个相似三角形的一对对应边的长分别是35cm和14cm,它们的周长相差60cm,求这两个三角形的周长.

在如图所附的格点图中画出两个相似的三角形.

如图,正方形EFGH的顶点在边长为a的正方形ABCD的边上,若AE=x,正方形EFGH的面积为y.

(1)求出y与x之间的函数关系式;
(2)正方形EFGH有没有最大面积?若有,试确定E点位置;若没有,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号