25、为了美化博望中学校园环境,建设绿色校园,我校准备对校园中30亩空地进行绿化.绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的三分之二.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.
(2)种植草皮的面积为多少时绿化总费用最低,最低费用为多少?
某商品的进价为每千克40元,销售单价与月销售量的关系如下表(每千克售价不能高于65元):
销售单价(元) |
50 |
53 |
56 |
59 |
62 |
65 |
月销售量(千克) |
420 |
360 |
300 |
240 |
180 |
120 |
该商品以每千克50元为售价,在此基础上设每千克的售价上涨元(
为正整数),每个月的销售利润为
元.
(1)求与
的函数关系式,并直接写出自变量
的取值范围;
(2)每千克商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
如图,在正△ABC中,点D是AC的中点,点E在BC上,且=
.
求证:(1)△ABE∽△DCE;
(2),求
如图,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有一垂直于水平面的旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.
如图,矩形ABCD内接于⊙O,且AB=,BC=1,求图中阴影部分所表示的扇形OAD的面积.
如图,已知A(-4,),B(2,-4)是一次函数
的图象和反比例函数
的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与轴的交点C的坐标及△AOB的面积;
(3)当取何值时,反比例函数值大于一次函数值.