如图一,在Rt△ABC中,∠ACB=90°,∠A=30°,P为BC边上任意一点,点Q为AC边动点,分别以Cm、MQ为边做等边△MPF和等边△PQE,连接EF.
(一)试探索EF与AB位置关系,并证明;
(5)如图5,当点P为BC延长线上任意一点时,(一)结论是否成立?请说明理由.
(3)如图3,在Rt△ABC中,∠ACB=90°,∠A=m°,P为BC延长线上一点,点Q为AC边动点,分别以CP、PQ为腰做等腰△PCF和等腰△PQE,使得PC=PF,PQ=PE,连接EF.要使(一)的结论依然成立,则需要添加怎样的条件?为什么?
下面的三角形ABC,三顶点的坐标分别为A(0,0),B(4,-2),C(5,3)
下面将三角形三顶点的坐标做如下变化:
(1)横坐标不变,纵坐标变为原来的2倍,此时所得三角形与原三角形相比有什么变化?
(2)横、纵坐标均乘以-1,所得新三角形与原三角形相比有什么变化?
(3)在(2)的条件下,横坐标减去2,纵坐标加上2,所得图形与原三角形有什么变化?
如果B(m+1,3m-5)到x轴的距离与它到y轴的距离相等,求m.
如果点A(-3,2m+1)关于原点对称的点在第四象限,求m的取值范围.
下图是正六边形ABCDEF,它的边长为2,请你建立适当的直角坐标系,把各顶点的坐标写出来.
下图是一种活动门的示意图,平时不用的时候推到一边去,晚上要用的时候拉过来锁上,不占地方,非常方便,它是由一个个菱形组成的,图中菱形的一个角是60°,菱形的边长是2,请用适当的方式表示菱形各顶点的位置.