某中学为了了解全校的耗电情况,抽查了10 天中全校每天的耗电量,数据如下表:(单位:kW·h)
耗电量/kW·h) |
90 |
93 |
102 |
113 |
114 |
120 |
天数 |
1 |
1 |
2 |
3 |
1 |
2 |
(1)写出上表中数据的众数和平均数;
(2)由上题获得的数据,估计该校某月的耗电量(按30天计);
(3)若当地每度电的定价是0.5元,写出该校应付电费y(元)与天数x 之间的函数关系式.
4张不透明的卡片,除正面画有不同的图形外,其它均相同,把这4张卡片洗匀后,正面向下放在桌上。
⑴从这4张卡片中随机抽取一张,它是轴对称图形但不是中心对称图形的概率是多少?(4分)
⑵从这4张卡片中随机抽取2张,利用列表或画树状图计算:2张卡片都是中心对称图形的概率是多少?(4分)
“五一”期间,某超市贴出促销海报,内容如图1.在商场活动期间,王莉和同组同学随机调查了部分参与活动的顾客,统计了200人次的摸奖情况,绘制成如图2的频数分布直方图.
(1)补全频数分布直方图;
(2)求所调查的200人次摸奖的获奖率;
(3)若超市每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元?(4分)
计算或化简:
(1).(2)
如图,在平面直角坐标系xOy中,一次函数(
为常数)的图象与x轴交于点A(
,0),与y轴交于点C.以直线x=1为对称轴的抛物线
(
为常数,且
≠0)经过A,C两点,并与x轴的正半轴交于点B.
(1)求的值及抛物线的函数表达式;
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于,
两点,试探究
是否为定值,并写出探究过程.
如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若=KD·GE,试判断AC与EF的位置关系,并说明理由;
(3) 在(2)的条件下,若sinE=,AK=
,求FG的长.