计算:+(-
)+
+(-
)+(-
);
两座建筑AB与CD,其地面距离AC为60米,从AB的顶点B测得CD的顶部D的仰角β=30°,测得其底部C的俯角α=60°,求两座建筑物AB与CD的高.(结果保留根号)
(1)计算:.
(2)先化简,再求值:,其中
满足
.
已知正比例函数反比例函数
由
构造一个新函数
其图象如图所示.(因其图象似双钩,我们称之为“双钩函数” ).给出下列几个命题:
①该函数的图象是中心对称图形;
②当时,该函数在
时取得最大值-2;
③的值不可能为1;
④在每个象限内,函数值随自变量
的增大而增大.
其中正确的命题是.(请写出所有正确的命题的序号)
如图,已知抛物线y=ax2+bx+c(经过原点)与x轴相交于N点,直线y=kx+4与坐标轴分别相交于A、D两点,与抛物线相交于B(1,m)和C(2,2)两点.
(1)求直线与抛物线的表达式;
(2)求证:C点是△AOD的外心;
(3)若(1)中的抛物线,在x轴上方的部分,有一动点P(x,y),设∠PON=α.当sinα为何值时,△PON的面积有最大值?
(4)若P点保持(3)中运动路线,是否存在△PON,使得其面积等于△OCN面积的?若存在,求出动点P的位置;若不存在,请说出理由.
如图,矩形ABCD中,P是边AD上的一动点,连接BP、CP,过点B作射线交线段CP的延长线于点E,交AD边于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y.
(1)说明△ABM∽△APB;并求出y关于x的函数关系式,写出自变量x的取值范围;
(2)当AP=4时,求sin∠EBP的值;
(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长。