(本小题共13分)已知函数,求时函数的最值。
已知椭圆:,直线交椭圆于两点. (Ⅰ)求椭圆的焦点坐标及长轴长; (Ⅱ)求以线段为直径的圆的方程.
在平面直角坐标系中,已知点,动点在轴上的正射影为点,且满足直线. (Ⅰ)求动点M的轨迹C的方程; (Ⅱ)当时,求直线的方程.
如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面. (Ⅰ)求证:平面平面; (Ⅱ)求四棱锥的体积.
设数列的首项为1,前n项和为Sn,且(). (1)求数列的通项公式; (2)设,是数列的前n项和,求.
设的内角,,所对的边长分别为,,且,. (1)若,求的值; (2)若的面积为3,求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号