(本小题满分14分)某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:
|
产品A(件) |
产品B(件) |
|
研制成本与搭载 费用之和(万元/件) |
20 |
30 |
计划最大资金额300万元 |
产品重量(千克/件) |
10 |
5 |
最大搭载重量110千克 |
预计收益(万元/件) |
80 |
60 |
|
试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?
:已知矩阵,A的一个特征值
,其对应的特征向量是
.
(Ⅰ)求矩阵;
(Ⅱ)求直线在矩阵M所对应的线性变换下的像的方程
:已知函数(a为常数)是R上的奇函数,函数
是区间[-1,1]上的减函数.
(I)求a的值;
(II)若上恒成立,求t的取值范围;
(III)讨论关于x的方程解的情况,并求出相应的m的取值范围.
:已知椭圆经过点
,且两焦点与短轴的一个端点构成等腰直角三角形。
(1)求椭圆的方程;
(2)动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T。若存在,求出点T的坐标;若不存在,请说明理由。
:如图,ABCD是块矩形硬纸板,其中AB=2AD= 2
,E为DC中点,将它沿AE折成直二面角D-AE-B.
(Ⅰ)求证:AD⊥平面BDE;
(Ⅱ)求二面角B-AD-E的余弦值.
:某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.
(Ⅰ)设所选3人中女生人数为,求
的分布列及数学期望;
(Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率.