如图,椭圆C:+
=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,
点(,
)在椭圆C上,直线l为椭圆C的左准线.
(1) 求椭圆C的方程;
(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.
是否存在点P,使得△F1PQ为等腰三角形?
若存在,求出点P的坐标;若不存在,说明理由.
(本小题满分12分)已知函数,
,且
,
.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)若,
,求
的值.
(本小题满分10分)选修:不等式选讲
已知函数,
(Ⅰ)解关于的不等式
;
(Ⅱ)若函数的图像恒在函数
图像的上方,求实数
的取值范围.
(本小题满分10分)选修;坐标系与参数方程
在直角坐标系中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,已知某圆的极坐标方程为:
.
(Ⅰ)将极坐标方程化为普通方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
(本小题满分10分)选修:几何证明选讲
如图,圆内接四边形的边
与
的延长线交于点
,点
在
的延长线上.
(Ⅰ)若,求
的值;
(Ⅱ)若,证明:
.
(本小题满分12分)已知函数(其中
),函数
在点
处的切线过点
.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数与函数
的图像在
有且只有一个交点,求实数
的取值范围.