(本小题满分14分)
已知函数的图像经过点
.
(1)求该函数的解析式;
(2)数列中,若
,
为数列
的前
项和,且满足
,
证明数列成等差数列,并求数列
的通项公式;
(3)另有一新数列,若将数列
中的所有项按每一行比上一行多一项的规则排成
如下数表:
![]() |
![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
记表中的第一列数构成的数列即为数列
,上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当
时,求上表中第
行所有项的和.
.(本小题满分14分)
已知函数。
(Ⅰ)若点(1,)在函数
图象上且函数在该点处的切线斜率为
,求
的极
大值;
(Ⅱ)若在区间[-1,2]上是单调减函数,求
的最小值
(本小题满分14分)
已知四棱锥的底面
是边长为4的正方形,
,
分别为
中点。
(1)证明:。
(2)求三棱锥的体积。
(本小题满分12分)
袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.
(1)求n的值;
(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标为b. 记事件A表示“a+b=2”,求事件A的概率.
(本小题满分为12分)
已知函数.
(Ⅰ)求的最小正周期;(Ⅱ)求
在区间
上的最大值和最小值.
(本小题满分12分)
已知向量,向量
,函数
.
(Ⅰ)求的最小正周期
;
(Ⅱ)已知,
,
分别为
内角
,
,
的对边,
为锐角,
,且
恰是在
,
上的最大值,求
,
和
的面积.