(本小题满分14分)
已知函数的图像经过点
.
(1)求该函数的解析式;
(2)数列中,若
,
为数列
的前
项和,且满足
,
证明数列成等差数列,并求数列
的通项公式;
(3)另有一新数列,若将数列
中的所有项按每一行比上一行多一项的规则排成
如下数表:
![]() |
![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
记表中的第一列数构成的数列即为数列
,上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当
时,求上表中第
行所有项的和.
如图,已知圆上的弧=
,过C点的圆的切线与BA的延长线交
于E点,证明:
证明:(Ⅰ)=
;(Ⅱ)
;
(12分)(12分)设a≥0,f(x)=x-1-ln2 x+2a ln x(x>0).
(Ⅰ)令F(x)=xf'(x),讨论F(x)在(0,+∞)内的单调性并求极值;
(Ⅱ)求证:当x>1时,恒有x>ln2x-2a ln x+1
轮船A和轮船B在中午12点整离开港口C,两艘轮船的航行方向之间的夹角为,轮船A的航行速度为25 千米/小时,轮船B的航行速度是15 千米/小时,下午2时两艘船的距离是多少?
已知函数(其中
),求:
函数
的最小正周期;
函数
图象的对称轴和对称中心
(12分) 在ΔABC中,已知 = 4,A = 45°,B = 15°,求a、b、和