如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC。已知AB=5,DE=2,BD=12,设CD=x.
(1)用含x的代数式表示AC+CE的长;
(2)请问点C在BD上什么位置时,AC+CE的值最小?
(3)根据(2)中的规律和结论,请构图求出代数式的最小值.
解不等式组,并将它的解集在数轴上表示出来.
如图,AB⊥BD,CD⊥BD,∠A=∠FEC.以下是小贝同学证明CD∥EF的推理过程或理由,请你在横线上补充完整其推理过程或理由.
证明:∵AB⊥BD,CD⊥BD(已知)
∴∠ABD=∠CDB=90°()∴∠ABD+∠CDB=180°.
∴AB∥()()
∵∠A=∠FEC(已知)
∴AB∥(()
∴CD∥EF()
已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
求证:(1)△BAD≌△CAE;
(2)试猜想BD、CE有何特殊位置关系,并证明.
如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,
(1)求∠F的度数;
(2)若CD=2,求DF的长.
小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.
(1)两种型号的地砖各采购了多少块?
(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?