如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA = 3,AB = 5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BO-OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)求直线AB的解析式;
(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);
(3)在点E从B向O运动的过程中,完成下面问题:
①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;
②当DE经过点O时,请你直接写出t的值.
某学校准备成立男女校足球队,为了解全校学生对足球的喜爱程度,该校设计了一个调查问卷,将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢),D(很不喜欢)四种类型,并派学生会会员进行市场调查,其中一名学生会会员小丽在校门口对上学学生进行了随机调查,并根据调查结果制成了如下两幅不完整的统计图,请结合统计图所给信息解答下列问题:
(1)在扇形统计图中C所占的百分比是;小丽本次抽样调查的人数共有人;请将折线统计图补充完整;
(2)为了解少数学生很不喜欢足球的原因,小丽决定在上述调查结果中从“很不喜欢”足球的学生里随机选出两位进行回访,请你用列表法或画树状图的方法,求所选出的两位学生恰好是一男一女的概率.
如图所示,A.B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=12km,∠A=45°,∠B=37°.桥DC和AB平行且等长,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km.参考数据:≈l.41,sin37°≈0.60,cos37°≈0.80)
如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,
(1)求证:△ACE≌△BCD;
(2)若DE=13,BD=12,求线段AB的长.
解方程:
先化简,再求值:,其中x是方程
的根.