为了估计养鱼池里有多少条鱼,养鱼者,然后放回池中,经过一段时间,待带标记的鱼完全混合于鱼群后,再捕第二次样品鱼120条,其中带标记的鱼有15条,试估计鱼池中约有鱼多少条?
(本小题8分)如图,∠AOB=∠COD=90°,OC平分∠AOB,OE是∠BOD的三等分线.
(1)求∠BOD的度数;
(2)求∠COE的度数.
(本小题6分)如图,点M在∠AOB的边OB上.
(1)过点M画线段MC⊥AO,垂足是点C;
(2)过点C画直线EF∥OB;
(3)∠AOB的余角是___.
(本小题5分)某自行车厂计划一周生产自行车1400辆,平均每天计划生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况:(超过每天计划生产数记为正、不足每天计划生产数记为负):
星期 |
一 |
二 |
三 |
四 |
五 |
六 |
日 |
增减 |
+5 |
﹣2 |
﹣4 |
+13 |
﹣10 |
+14 |
﹣9 |
(1)该厂星期三生产自行车_________辆;
(2)产量最多的一天比产量最少的一天多生产自行车________辆;
(3)该厂本周实际每天平均生产多少辆自行车?
数学课上林老师出示了问题:如图,AD∥BC,∠AEF=90°AD=AB=BC=DC,∠B=90°,点E是边BC的中点,且EF交∠DCG的平分线CF于点F,求证:AE=EF.
同学们作了一步又一步的研究:
(1)经过思考,小明展示了一种解题思路:如图1,取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF,小明的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小颖提出一个新的想法:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(3)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
已知:如图, AD=CD=CB=AB=a,DA∥CB,AB⊥CB,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.
(1)求AC的长;
(2)求证:AB=AG.