解不等式组:
如图,抛物线与轴交于
、
两点,与
轴交
点,点
的坐标为
,点
的坐标为
,它的对称轴是直线
.
(1)求抛物线的解析式;
(2)是线段
上的任意一点,当
为等腰三角形时,求
点的坐标.
如图,已知二次函数的图象交
轴于
、
两点.
(1)求线段的长;
(2)在同一坐标系中画出直线,并写出当
在什么范围内时,一次函数的值大于二次函数的值.
某种盆栽花卉每盆的盈利与每盆种植花卉的株数有关:已知每盆种植3株时,平均每株可盈利4元;若每盆多种植1株,则平均每株盈利要减少0.5元.为使每盆的盈利达到15元,则每盆应种植花卉多少株?
如图,直线y=﹣x+3与x轴,y轴分别交于B,C两点,抛物线y=﹣x2+bx+c经过B,C两点,点A是抛物线与x轴的另一个交点.
(1)求B、C两点坐标;
(2)求此抛物线的函数解析式;
(3)在抛物线上是否存在点P,使S△PAB=S△CAB,若存在,求出P点坐标,若不存在,请说明理由.
如图,△ABC内接于⊙O,AB是⊙O的直径,C是的中点,弦CE⊥AB于点H,连结AD,分别交CE、BC于点P、Q,连结BD
(1)求证:∠ACH=∠CBD;
(2)求证:P是线段AQ的中点;
(3)若⊙O 的半径为5,BH=8,求CE的长.