(本小题满分14分)
已知函数.
(Ⅰ)求的值;
(Ⅱ)若数列
,
求数列的通项公式;
(Ⅲ)若数列满足
,
是数列
的前
项和,是否存在正实数
,使不等式
对于一切的
恒成立?若存在,请求出
的取值范围;若不存在,请说明理由.
将一颗正方体的骰子先后抛掷2次(每个面朝上等可能),记下向上的点数,求:
(1)求两点数之和为5的概率;
(2)以第一次向上点数为横坐标,第二次向上的点数为纵坐标
的点
在圆
的内部的概率.
已知函数.(
为常数)
(1)当时,①求
的单调增区间;②试比较
与
的大小;
(2),若对任意给定的
,在
上总存在两个不同的
,使得
成立,求
的取值范围.
已知椭圆的右焦点为
,离心率
,
是椭圆上的两动点,动点
满足
(其中实数
为常数).
(1)求椭圆标准方程;
(2)当,且直线
过
点且垂直于
轴时,求过
三点的外接圆方程;
(3)若直线与
的斜率乘积
,问是否存在常数
,使得动点
满足
,其中
,若存在求出
的值,若不存在,请说明理由.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求的值;
(2)若该商品的成本为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
设,若
成等差数列.
(1) 求展开式的中间项;
(2)求展开式中所有含
奇次幂的系数和.