(1)如图所示,用5个小正方体搭成的立体图形,请你从正面、左面、上面观察这个几何体,分别画出你所看到的几何体的形状图;
(2)一个几何体由几块大小相同的小立方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体从正面、左面观察的形状图.
在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数![]() |
100 |
200 |
300 |
500 |
800 |
1000 |
3000 |
摸到白球的次数![]() |
65 |
124 |
178 |
302 |
481 |
599 |
1803 |
摸到白球的频率![]() |
0.65 |
0.62 |
0.593 |
0.604 |
0.601 |
0.599 |
0.601 |
(1)请估计:当很大时,摸到白球的频率将会接近.(精确到0.1)
(2)假如你摸一次,你摸到白球的概率.
(3)试估算盒子里黑、白两种颜色的球各有多少只?
在结束了初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:
(1)图1中“统计与概率”所在扇形的圆心角为度;
(2)图2、3中的,
;
(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?
如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.
(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;
(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.
已知:如图,在□ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F.
求证:△BEF ≌ △CDF
如图,已知菱形ABCD的边长为2,∠B=60°,点P、Q分别是边BC、CD上的动点(不与端点重合),且BP=CQ.
(1)图中除了△ABC与△ADC外,还有哪些三角形全等,请写出来;
(2)点P、Q在运动过程中,四边形APCQ的面积是否变化,如果变化,请说明理由;如果不变,请求出面积;
(3)当点P在什么位置时,△PCQ的面积最大,并请说明理由.