某化工厂生产某种化肥,每吨化肥的出厂价为1780元,其成本价为900元,但在生产过程中,平均每吨化肥有280立方米有害气体排出,为保护环境,工厂须对有害气体进行处理,现有下列两种处理方案可供选择:
①将有害气体通过管道送交废气处理厂统一处理,则每立方米需付费3元;
②若自行引进处理设备处理有害气体,则每处理1立方米有害气体需原料费0.5元,且设备每月管理、损耗等费用为28000元.设工厂每月生产化肥x吨,每月利润为y元(注:利润=总收入-总支出)
(1)分别求出用方案①、方案②处理有害气体时,y与x的函数关系式;
(2)根据工厂每月化肥产量x的值,通过计算分析工厂应如何选择处理方案才能获得最大利润.
(本题满分10分)
先化简,再求值:(3+2)(3
一2)一5
(
一l)一(2
一l)2,其中
=-
某校九年级有200名学生参加了全国初中数学联合竞赛的初赛,为了了解本次初赛的成绩情况,从中抽取了50名学生,将他们的初赛成绩(得分为整数,满分为100分)分成五组:第一组49.5~59.5;第二组59.5~69.5;第三组69.5~79.5;第四组79.5~89.5;第五组89.5~100.5.统计后得到图8所示的频数分布直方图(部分).观察图形的信息,回答下列问题:
(1)第四组的频数为_____(直接写答案).
(2)若将得分转化为等级,规定:得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”.那么这200名参加初赛的学生中,参赛成绩评为“D”的学生约有________个(直接填写答案).
(3)若将抽取出来的50名学生中成绩落在第四、第五组的学生组成一个培训小组,再从这个培训小组中随机挑选2名学生参加决赛.用列表法或画树状图法求:挑选的2名学生的初赛成绩恰好都在90分以上的概率.
如图,东梅中学要在教学楼后面的空地上用40m长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y.
(1)求y与x的函数关系式,并求自变量x的取值范围;
(2)生物园的面积能否达到210m2?说明理由.
(1)如图①,PA、PB分别与⊙O相切于点A、B.求证:PA=PB.
(2)如图②,过⊙O外一点P的两条直线分别与⊙O相交于点A、B和C、D.
则当时,PB=PD
(不添加字母符号和辅助线,不需证明,只需填上符合题意的一个条件).
在平面直角坐标系中,点M的坐标为(a,1-2a).
(1)当a=-1时,点M在坐标系的第___________象限(直接填写答案);
(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,求a的取值范围.