如图所示,在匀强磁场中竖直放置两条足够长的平行导轨,磁场方向与导轨所在平面垂直,磁感强度大小为B0。导轨上端连接一阻值为R的电阻和电键K,导轨电阻不计。两金属棒a和b的电阻都为R,质量分别为ma=0.02kg和mb=0.01kg,它们与导轨接触良好,并可沿导轨无摩擦地运动,g取10m/s2。
(1)若将b棒固定,电键K断开,用一竖直向上的恒力F拉a棒,稳定后a棒以v1=10m/s的速度向上匀速运动。此时再释放b棒,b棒恰能保持静止。求拉力F的大小。
(2)若将a棒固定,电键K闭合,让b棒自由下滑,求b棒滑行的最大速度v2。
(3)若将a棒和b棒都固定,电键K断开,使磁感强度从B0随时间均匀增加,经0.1s后磁感强度增大到2B0时a棒所受到的安培力大小正好等于a棒的重力,求两棒间的距离h。
一质量为m的小球以速度水平抛出,经时间t落地,(不计空气阻力,重力加速度为g)求:
(1)此过程重力做的功;
(2)此过程中重力做功的平均功率;
(3)小球落地时重力做功的瞬时功率。
如图所示,在光滑的水平面上,一质量为m=5kg的滑块在细线的作用下,绕竖直轴以线速度v=0.4m/s做圆周运动,滑块离竖直轴的距离r=0.2m,(g=10m/s2)求:
(1)滑块运动的角速度大小;
(2)滑块受到细线拉力的大小。
如图8所示,光滑坡道顶端距水平面高度为h,质量为m的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端恰位于滑道的末端O点.已知在OM段,物块A与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:
(1)物块滑到O点时的速度大小;
(2)弹簧为最大压缩量d时的弹性势能(设弹簧处于原长时弹性势能为零)
(3)若物块A能够被弹回到坡道上,则它能够上升的最大高度是多少?
如图7所示,光滑水平面右端B处连接一个竖直的半径为R的光滑半圆固定轨道,在离B距离为L的A点,用水平恒力将质量为m的质点从静止开始推到B处后撤去恒力,质点沿半圆轨道运动到C处后又正好落回A点。求推力对小球所做的功。
有一圆球形的天体,其自转周期为T(s),在它两极处用弹簧秤称得某物体的重力为w(N),在它的赤道处,称得该物体的重力w′=0.9w(N),引力常量为G.则该天体的平均密度是多少?