(本小题满分12分)为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气的含药量(毫克)与时间
(小时)成正比.药物释放完毕后,
与
的函数关系式为
(
为常数),如图所示,根据图中提供的信息,回答下列问题:
(1)求从药物释放开始,每立方米空气中的含药量(毫克)与时间
(小时)之间的函数关系式;(2)据测定,当空气中每立方米空气的含药量降到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到进教室?
(本小题满分14分)
已知为函数
图象上一点,
为坐标原点.记直线
的斜率
。
(I)同学甲发现:点
从左向右运动时,
不断增大,试问:他的判断是否正确?若正确,请说明理由:若不正确,请给出你的判断。
(Ⅱ)求证:当时,
。
(III)同学乙发现:总存在正实数、
,使
.试问:他的判断是否正确?若不正确,请说
明理由:若正确,请求出
的取值范围。
(本小题满分13分
)
已知抛物线的焦点为F,过F的直线交抛物线于A、B的两点,过A、B两点分别作抛物线的切线,设其交点为M。
(Ⅰ)设
,试用
表示点M的坐标。
(Ⅱ)是否为定值,如果是,请求出定
值,如果不是,请说明理由。
(III)设△ABM的面积为,试确定
的最小值。
各棱长均为2的斜三棱柱ABC—DEF中,已知BF⊥AE,
BF∩CE=O,AB=AE,连结AO。
(I)求证:AO⊥平面FEBC。
(II)求二面角B—AC—E的大小。
(III)求三棱锥B—DEF的体积。
(本小题满分13分)
我校要用三辆汽车把高二文科学生从学校送到古田参加社会实践活动,已知学校到古田有两条公路,汽车走公路①堵车的概率为,不堵车的概率为
;汽车走公路②堵车的概率为
,不堵车的概率为
.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响
(I)若三辆汽车中恰有一辆汽车被堵的概率为,求汽
车走公路②堵车的概率P。
(II)在(1)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望。
在ΔABC中,角A、B、C所对的边分别为a、b、c,且。
(I)求的值。
(II)若,
,求∠C。