(本小题满分14分)已知一个数列的各项都是1或2.首项为1,且在第
个1和第
个1之间有
个2,即1,2,1,2,2,2,1,2,2,2,2,2,1,….记数列的前
项的和为
.参考:31×32=992,32×33=1056,44×45=1980,45×46=2070
(I)试问第10个1为该数列的第几项?
(II)求和
;
(III)是否存在正整数,使得
?如果存在,求出
的值;如果不存在,请说明理由.
已知是自然对数的底数,函数
。
(1)求函数的单调递增区间;
(2)当时,函数
的极大值为
,求
的值。
已知函数
(1)求曲线y=f(x)在(2,f(2))处的切线方程;
(2)若g(x)=f(x)一有两个不同的极值点.其极小值为M,试比较2M与一3的大小,并说明理由;
(3)设q>p>2,求证:当x∈(p,q)时,.
已知函数.
(1)当时,求曲线
在点
处的切线方程;
(2)当时,讨论
的单调性.
设函数.
(1)设,
,
,证明:
在区间
内存在唯一的零点;
(2)设,若对任意
、
,有
,求
的取值范围.
已知函数,其中
,
是自然对数的底数.
(1)求函数的零点;
(2)若对任意均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围;
(3)已知,且函数
在R上是单调函数,探究函数
的单调性.