下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗
(吨标准煤)的几组对照数据
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于
的线性回归方程
;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性
回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
已知函数(
)。
(Ⅰ)当时,求
在区间[1,e]上的最大值和最小值;
(Ⅱ)若在区间(1,+∞)上,函数的图象恒在直线
下方,求
的取值范围。
如图所示的几何体中,
平面
,
,
,
,
是
的中点。
(Ⅰ)求证:;
(Ⅱ)设二面角的平面角为
,求
。
已知点是中心在原点,长轴在x轴上的椭圆的一个顶点,离心率为
,椭圆的左右焦点分别为F1和F2 。
(Ⅰ)求椭圆方程;
(Ⅱ)点M在椭圆上,求⊿MF1F2面积的最大值;
(Ⅲ)试探究椭圆上是否存在一点P,使,若存在,请求出点P的坐标;若不存在,请说明理由。
甲、乙等五名亚运志愿者被随机地分到四个不同的赛场服务,每个赛场至少有一名志愿者。
(Ⅰ)求甲、乙两人同时参加赛场服务的概率;
(Ⅱ)求甲、乙两人不在同一个赛场服务的概率;
(Ⅲ)设随机变量为这五名志愿者中参加
赛场服务的人数,求
的分布列。