(本题满分14分)设有关于的一元二次方程
.
(1)若是从0,1,2,3四个数中任取的一个数,
是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若是从区间[0,3]任取的一个数,
是从区间[0,2]任取的一个数,求上述方程有实根的概率.
已知分别是椭圆
的左、右 焦点,已知点
满足
,且
。设
是上半椭圆上且满足
的两点。
(1)求此椭圆的方程;
(2)若,求直线AB的斜率。
已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R万元,且R
(1)写出年利润关于年产量
的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大。
(注:年利润=年销售收入-年总成本)
如图: PA⊥平面ABCD,ABCD是矩形,PA=AB=1,
AD=,点F是PB的中点,点E在边BC上移动.
(Ⅰ)求三棱锥E-PAD的体积;
(Ⅱ)当点E为BC的中点时,试判断EF与平面
PAC的位置关系,并说明理由;
(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.
已知函数,
(Ⅰ)求函数
的最小值;
(Ⅱ)已知,命题p:关于x的不等式
对任意
恒成立;命题
:指数函数
是增函数.若“p或q”为真,“p且q”为假,求实数
的取值范围.
在直角坐标系中,直线
的参数方程为
(
为参数),在极
坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以
轴正半轴为极轴)中,圆C的方程为
。
①求圆C的直角坐标方程;
② 设圆C与直线交于点A、B,若点P的坐标为
,求|PA|+|PB|。