如图,在三棱柱中,
,顶点
在底面
上的射影恰为点
,且
.
(Ⅰ)证明:平面平面
;
(Ⅱ)求棱与
所成的角的大小;
(Ⅲ)若点为
的中点,并求出二面角
的平面角的余弦值.
已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面PAD⊥面ABCD.
(Ⅰ)证明:平面PAD⊥平面PCD;
(Ⅱ)试在棱PB上确定一点M,使截面AMC
把几何体分成的两部分.
有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5. 同时投掷这两枚玩具一次,记为两个朝下的面上的数字之和.
(Ⅰ)求事件“不大于6”的概率;
(Ⅱ)“为奇数”的概率和“
为偶数”的概率是不是相等?证明你的结论.
设函数的最小正周期为
.
(Ⅰ)求的值.
(Ⅱ)若函数的图像是由
的图像向右平移
个单位长度得到,求
的单调增区间.
已知函数f(x)=;
(1)求y=f(x)在点P(0,1)处的切线方程;
(2)设g(x)=f(x)+x-1仅有一个零点,求实数m的值;
(3)试探究函数f(x)是否存在单调递减区间?若有,设其单调区间为[t,s],试求s-t的取值范围?若没有,请说明理由。
如图,已知点D(0,-2),过点D作抛物线:
的切线l,切点A在第二象限。
(1)求切点A的纵坐标;
(2)若离心率为的椭圆
恰好经过A点,设切线l交椭圆的另一点为B,若设切线l,直线OA,OB的斜率为k,
,①试用斜率k表示
②当
取得最大值时求此时椭圆的方程。