已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面PAD⊥面ABCD.
(Ⅰ)证明:平面PAD⊥平面PCD;
(Ⅱ)试在棱PB上确定一点M,使截面AMC
把几何体分成的两部分.
设函数对任意
,都有
,当
时,
(1)求证:是奇函数;
(2)试问:在时
,
是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式
(1)求
(2).
已知函数的图象在与
轴交点处的切线方程是
.
(I)求函数的解析式;
(II)设函数,若
的极值存在,求实数
的取值范围以及函数
取得极值时对应的自变量
的值.
某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是,
,
且各轮次通过与否相互独立.
(I)设该选手参赛的轮次为,求
的分布列和数学期望;
(Ⅱ)对于(I)中的,设“函数
是偶函数”为事件D,求事件D发生的概率.
函数(A>0,
>0)的最小值为-1,其图象相邻两个对称中心之间的距离为
.
(1)求函数的解析式
(2)设,则
,求
的值.