解方程:x3-9x=x2-9.
如图①,在钝角 中, , ,点 为边 中点,点 为边 中点,将 绕点 逆时针方向旋转 度 .
(1)如图②,当 时,连接 、 .求证: ;
(2)如图③,直线 、 交于点 .在旋转过程中, 的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;
(3)将 从图①位置绕点 逆时针方向旋转 ,求点 的运动路程.
在 中, .
(1)如图①,点 在斜边 上,以点 为圆心, 长为半径的圆交 于点 ,交 于点 ,与边 相切于点 .求证: ;
(2)在图②中作 ,使它满足以下条件:
①圆心在边 上;②经过点 ;③与边 相切.
(尺规作图,只保留作图痕迹,不要求写出作法)
为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.
男、女生所选类别人数统计表
类别 |
男生(人) |
女生(人) |
文学类 |
12 |
8 |
史学类 |
|
5 |
科学类 |
6 |
5 |
哲学类 |
2 |
|
根据以上信息解决下列问题
(1) , ;
(2)扇形统计图中“科学类”所对应扇形圆心角度数为 ;
(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.
如图,矩形 中, , ,点 、 分别在 、 上,且 .
(1)求证:四边形 是菱形;
(2)求线段 的长.
如图, 为 的直径, 为 上一点, 是弧 的中点, 与 、 分别交于点 、 .
(1)求证: ;
(2)求证: ;
(3)若 ,求 的值.