(本小题13分)曲线上任意一点M满足
, 其中F
(-
F
(
抛物线
的焦点是直线y=x-1与x轴的交点, 顶点为原点O.
(1)求,
的标准方程;
(2)请问是否存在直线满足条件:①过
的焦点
;②与
交于不同
两点,
,且满足
?若存在,求出直线
的方程;若不
存在,说明理由.
(本小题满分10分)选修4—5:不等式选讲
已知关于x的不等式(其中
).
(1)当a=4时,求不等式的解集;
(2)若不等式有解,求实数a的取值范围
(本小题满分10分)选修4—4:坐标系与参数方程
在极坐标系中,曲线,过点A(5,α)(α为锐角且
)作平行于
的直线
,且
与曲线L分别交于B,C两点.
(1)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线的普通方程;
(2)求|BC|的长
(本小题满分10分)选修41:几何证明选讲
如图,相交于A、B两点,AB是
的直径,过A点作
的切线交
于点E,并与BO1的延长线交于点P,PB分别与
、
交于C,D两点.
求证:(1)PA·PD=PE·PC;
(2)AD=AE
(本小题满分12分)
设二次函数,函数
,且有
,
(1)求函数的解析式;
(2)是否存在实数k和p,使得成立,若存在,求出k和p的值;若不存在,说明理由.
(本小题满分12分)
已知椭圆M的中心为坐标原点,且焦点在x轴上,若M的一个顶点恰好是抛物线的焦点,M的离心率
,过M的右焦点F作不与坐标轴垂直的直线
,交M于A,B两点.
(1)求椭圆M的标准方程;
(2)设点N(t,0)是一个动点,且,求实数t的取值范围.