如图,信封中装有两张卡片,卡片上分别写着7cm、3cm;
信封中装有三张卡片,卡片上分别写着2cm、4cm、6cm;信封外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从两个信封中各取出一张卡片,与信封外的卡片放在一起,用卡片上标明的数量分别作三条线段的长度.用画树状图法,求这三条线段能组成三角形的概率.
如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.
(1)求△OAB的面积;
(2)若抛物线y=-x2-2x+c经过点A.
①求c的值;
②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可).
如图,⊙O的直径AB=10,CD是⊙O的弦,AC与BD相交于点P.
(1) 设∠BPC=α,如果sinα是方程5x2-13x+6=0的根,求cosα的值;
(2) 在(1)的条件下,求弦CD的长.
甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线、线段
分别表示甲、乙两车所行路程
(千米)与时间
(小时)之间的函数关系对应的图象(线段
表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:
(1)求乙车所行路程与时间
的函数关系式;
(2)求两车在途中第二次相遇时,它们距出发地的路程.
为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中共调查了多少名学生?
(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;
(3)求表示户外活动时间 1小时的扇形圆心角的度数;
(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?
如图中,
,
,如果将
在坐标平面内,绕原点
按顺时针方向旋转到
的位置.
(1)求点的坐标.
(2)求顶点从开始到
点结束经过的路径长.