在直角坐标系中,已知抛物线与x轴交于点A(1,0)和点B,顶点为P.
(1)若点P的坐标为(-1,4),求此时抛物线的解析式;
(2)如图若点P的坐标为(-1,k),k<0,点Q是y轴上一个动点,
当k为何值时,QB+QP取得最小值为5;
(3)试求满足(2)时动点Q的坐标. (本题12分)
已知:如图,∠B=90°,AB∥DF,AB=3cm,BD=8cm,点C是线段BD上一动点,点E是直线DF上一动点,且始终保持AC⊥CE.
(1)试说明:∠ACB =∠CED
(2)若AC="CE" ,试求DE的长
(3)在线段BD的延长线上,是否存在点C,使得AC=CE,若存在,请求出DE的长及△AEC的面积;若不存在,请说明理由。
如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.
(1)写出点A,B,C,D的坐标;
(2)求点A和点C之间的距离
如图,长方体的底面是边长为1cm 的正方形,高为3cm.
(1)如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请计算所用细线最短需要cm?
(2)如果从点A开始经过4个侧面缠绕3圈到达点B,那么所用细线最短需要 cm.(直接填空)
如图,点B、F、C、E在一条直线上,BF=EC,AB∥ED,AC∥FD,求证:AC=DF.
如图:在88的正方形网格中,已知网格中小正方形的边长为1,
的三个顶点在格点上。
(1)画出关于直线
的对称图形
;
(2)_____________直角三角形(填“是”或“不是”
(3)的面积是_____________