如图所示,匀强电场区域和匀强磁场区域是紧邻的,且宽度相等均为 d ,电场方向在纸平面内竖直向下,而磁场方向垂直纸面向里.一带正电粒子从 O 点以速度 v0沿垂直电场方向进入电场,在电场力的作用下发生偏转,从 A 点离开电场进入磁场,离开电场时带电粒子在电场方向的位移为电场宽度的一半,当粒子从C点穿出磁场时速度方向与进入电场O点时的速度方一致,(带电粒子重力不计)求
(l)粒子从 C 点穿出磁场时的速度v;
(2)电场强度 E 和磁感应强度 B 的比值 E / B ;
(3)粒子在电、磁场中运动的总时间。
如图所示,固定于水平桌面上足够长的两平行导轨PQ、MN,PQ、MN的电阻不计,间距为P、M两端接有一只理想电压表,整个装置处于竖直向下的磁感应强度B=0.2T的匀强磁场中.电阻均为
,质量分别为
和
的两金属棒L1、L2平行的搁在光滑导轨上,现固定棒L1,L2在水平恒力F=0.8N的作用下,由静止开始做加速运动,试求:
(1)当电压表的读数为U=0.2V时,棒L2的加速度多大?
(2)棒L2能达到的最大速度。
如图所示,金属杆放在光滑的水平金属导轨上,与导轨组成闭合矩形电路,长
宽
回路总电阻
回路处在竖直向上的磁场中,金属杆用水平绳通过定滑轮连接质量
的木块,磁感应强度从
开始随时间均匀增强,5s末木块将离开水平面,不计一切摩擦,g取
,求回路中的电流强度。
如图所示(俯视),MN和PQ是两根固定在同一水平面上的足够长且电阻不计的平行金属导轨.两导轨间距为L=0.2m,其间有一个方向垂直水平面竖直向下的匀强磁场B1=5.0T。导轨上NQ之间接一电阻R1=0.40,阻值为R2=0.10
的金属杆垂直导轨放置并与导轨始终保持良好接触。两导轨右端通过金属导线分别与电容器C的两极相连。电容器C紧靠着带小孔a(只能容一个粒子通过)的固定绝缘弹性圆筒。圆筒内壁光滑,筒内有垂直水平面竖直向下的匀强磁场B2,O是圆筒的圆心,圆筒的内半径为r=0.40m。
(1)用一个大小恒为10N,平行于MN水平向左的外力F拉金属杆,使杆从静止开始向左运动求:当金属杆最终匀速运动时杆的速度大小;
(2)当金属杆处于(1)问中的匀速运动状态时,电容器C内紧靠极板且正对a孔的D处有一个带正电的粒子从静止开始经电容器C加速后从a孔垂直磁场B2并正对着圆心O进入筒中,该带电粒子与圆筒壁碰撞四次后恰好又从小孔a射出圆筒。已知粒子的比荷q/m=5×107(C/kg),该带电粒子每次与筒壁发生碰撞时电量和能量都不损失,不计粒子重力和空气阻力,则磁感应强度B2多大(结果允许含有三角函数式)。
如图(a)所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为M1的物体,∠ACB=30°;如图(b)中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳CF拉住一个质量为M2的物体,求:
(1)细绳AC段的张力TAC与细绳EG的张力TEG之比;
(2)轻杆BC对C端的支持力;
(3)轻杆HG对G端的支持力.
有些人,像电梯修理员、牵引专家和赛艇运动员,常需要知道绳或金属线中的张力,可又不能到那些绳、线的自由端去测量.一家英国公司现在制造出一种夹在绳上的仪表,用一个杠杆使绳子的某点有一个微小偏移量,如图所示,仪表很容易测出垂直于绳的恢复力.推导一个能计算绳中张力的公式.如果偏移量为12 mm,恢复力为300 N,计算绳中张力.