下表为某月的月历。
日 |
一 |
二 |
三 |
四 |
五 |
六 |
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
|
|
(1)在此月历上用一个矩形任意圈出23个数,如果圈出的6个数之和为51,这6天分别是几号?
(2)观察此月历,你还能提出其他的问题吗?
如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中 点,AE=CF,DF∥BE.
(1)求证:△BOE≌△DOF;
(2)若OD=AO,则四边形ABCD是什么特殊四边形?请证明你的结论.
2013年2月28日,全国科学技术名词审定委员会称PM2.5拟正式命名为“细颗粒物”。 PM2.5值越大,空气污染越严重。小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据图中提供的信息,解答下列问题:
(1)本次共抽取了天;
(2)请补全条形统计图,扇形统计图中表示优的扇形的圆心角度数为°;
(3)请估计该市这一年(365天)达到优和良的总天数.
(1)解方程:;
(2)解不等式:,并把解集表示在数轴上.
(1)计算:;
(2)化简:.
如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连结AB.点
P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于D,作DE⊥AC于E.F为射线CB上一点,且∠CEF=∠ABC.设点P的运动时间为x(秒).
(1)用含有x的代数式表示CE的长;
(2)求点F与点B重合时x的值;
(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式;
(4)当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值.