已知地面上有一旗杆OP,为了测得其高度h,地面上取一基线AB,AB=20米,在A处测得P点的仰角∠OAP=30°,在B处测得P点的仰角∠OBP=45°,又知∠AOB=60°,求旗杆的高度h.
(本小题满分10分)
在△中,
所对的边分别为
,
,
.
(1)求;
(2)若,求
,
,
.
(本小题满分12分)
已知函数其中a为常数,且
.
(Ⅰ)当时,求
在
(e=2.718 28…)上的值域;
(Ⅱ)若对任意
恒成立,求实数a的取值范围.
(本小题满分12分)
已知椭圆(
)的左、右焦点分别为
、
,其中
也是抛物线
的焦点,
是
与
在第一象限的交点,且
.
(1)求椭圆的方程;
(2)已知菱形的顶点
、
在椭圆
上,顶点
、
在直线
上,求直线
的方程.
(本小题满分12分)
已知是数列
其前
项和,且
,
.
(1)求数列的通项公式;
(2)设,且
是数列
的前
项和,求使得
对所有
都成立的最小正整数
.
(本小题满分12分)
如图,在底面是正方形的四棱锥中,
面
,
交
于点
,
是
中点,
为
上一点.
(Ⅰ)求证:;
(Ⅱ)确定点在线段
上的位置,使
//平面
,并说明理由;
(Ⅲ)当二面角的大小为
时,求
与底面
所成角的正切值.