(本题12分)
提高过立交桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,成都某立交桥上的车流速度(单位:千米/小时)是车流密度
(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当
时,车流速度
是车流密度
的一次函数.
(Ⅰ)当时,求函数
的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最大值.(精确到1辆/小时)
已知奇函数
(1)求实数m的值,并在给出的直角坐标系中画出的图象;
(2)若函数在区间[-1,
-2]上单调递增,试确定
的取值范围.
已知集合,
。
(1)若,求
、
;
(2)若,求
的值。
(本小题满分14分)
已知函数的一系列对应值如下表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)根据表格提供的数据求函数的一个解析式;
(2)根据(1)的结果,若函数周期为
,当
时,方程
恰有两个不同的解,求实数
的取值范围.
(本小题满分14分)
已知,
,是否存在常数
,使得
的值域为
?若存在,求出
的值;若不存在,说明理由.
(本小题满分12分)已知函数
,
.
(1)求函数的最小正周期和单调递增区间;
(2)求函数在区间
上的最小值和最大值,并求出取得最值时
的值.