如图,在平行四边形ABCD中过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点且∠AFE=∠B.
(1)求证:△ADF∽△DEC
(2)若AB=4,AD=3,AE=3,求AF的长.
给出下列命题:
命题1:点(1,1)是直线y=x与双曲线y=的一个交点;
命题2:点(2,4)是直线y=2x与双曲线y=的一个交点;
命题3:点(3,9)是直线y=3x与双曲线y=的一个交点;
(1)请观察上面命题,猜想出命题n(n是正整数);
(2)证明你猜想的命题n是正确.
如图,⊙O中,AB、CD是⊙O的直径,F是⊙O上一点,连接BC、BF,若点B是弧CF的中点.
(1)求证:△ABF≌△DCB;
(2)若CD⊥AF,垂足为E,AB=10,∠C=60°,求EF的长.
九年级五班某同学为了测量某市电视台的高度,进行了如下操作:
(1)在点A处安置测倾器,测得塔顶C的仰角∠CAB=30°;
(2)他沿着电视塔方向前进了80米到达B处,又测得塔顶C的仰角为60°;
(3)量出测倾器AF的高度AF=1.5米.根据测量数据,请你计算出电视塔的高度CE约为多少米.(精确到0.1米,≈1.73)
已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(1,3)在反比例函数y=的图象上,且sin∠BAC=
.
(1)求k的值和边AC的长;
(2)求点B的坐标.
先化简,再求值:,其中a=-3.