如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且
,
.
理解与作图:
(1)在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.
计算与猜想:
(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?
启发与证明:
(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.
(本小题满分12分)
如图,RtΔABC中,∠ACB=90°,AC=4,BA=5,点P是AC上的动点(P不与A、C重合)PQ⊥AB,垂足为Q.设PC=x,PQ= y.⑴求y与x的函数关系式;
⑵试确定此RtΔABC内切圆I的半径,并探求x为何值时,直线PQ与这个内切圆I相切?
⑶若0<x<1,试判断以P为圆心,半径为y的圆与⊙I能否相内切,若能求出相应的x的值,若不能,请说明理由.
(本小题满分12分)如图,已知抛物线与
关于
轴对称,并与
轴交于点M,与
轴交于点A和B.
(1)求出
的解析式,试猜想出一般形式
关于
轴对称的二次函数解析式(不要求证明);
(2)若AB的中点是C,求
;
(3)如果一次函数
过点
,且与抛物线
,相交于另一点
,如果
,且
,求
的值。
(本小题满分10分)△ABC中,AC=BC.以BC为直径作⊙O交AB于点D,交AC于点G.直线DF⊥AC,垂足为F,交CB的延长线于点E.
(1)判断直线EF与⊙O的位置关系,并
说明理由;
(2)如果BC=10,AB=12,求CG的长.
(本小题满分10分)
在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:
第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);
第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2)
请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论.
(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?
(本小题满分12分)
如图,反比例函数的图象经过A、B两点,根据图中信息解答下列问题:
(1)写出A点的坐标;
(2)求反比例函数的解析式;
(3)若点A绕坐标原点O旋转90°后得到点C,请写出点C的坐标;并求出直线BC的解析式.