作出函数的图象,并根据图象回答下列问题:
(1)y的值随x的增大而 ;
(2)图象与x轴的交点坐标是 ;与y轴的交点坐标是 ;
(3)当x 时,y≥0;
(4)函数的图象与坐标轴所围成的三角形的面积是________________。
解方程:
(1)x2﹣8x+1=0
(2)3x(x﹣2)=2(2﹣x)
(3)x2+2x﹣3=0.
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(4,0)两点,与y轴交于点C,tan∠BAC=2.
(1)求抛物线的解析式;
(2)点P从O点出发,在线段OB上以每秒1个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度向C点运动,其中一个点到达终点时,另一点也停止运动,问运动多少秒时,△PBQ的面积最大?最大面积是多少?
(3)过点P向x轴作垂线,交抛物线于一点M,是否存在点M,使得点M到BC的距离等于?若存在,求出点M的坐标;若不存在,请说明理由.
如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.
(1)求证:BD=BF;
(2)若CF=1,cosB=,求⊙O的半径.
如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm
伞架 |
DE |
DF |
AE |
AF |
AB |
AC |
长度 |
36 |
36 |
36 |
36 |
86 |
86 |
(1)求AM的长.
(2)当∠BAC=104°时,求AD的长(精确到1cm).
备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.
如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.
(1)求证:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.