作出函数的图象,并根据图象回答下列问题:
(1)y的值随x的增大而 ;
(2)图象与x轴的交点坐标是 ;与y轴的交点坐标是 ;
(3)当x 时,y≥0;
(4)函数的图象与坐标轴所围成的三角形的面积是________________。
某自行车厂计划每天平均生产n辆自行车,而实际产量与计划产量相比有出入.下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产量记为负):
星期 |
一 |
二 |
三 |
四 |
五 |
实际生产量 |
+5 |
-2 |
-4 |
+13 |
-3 |
(1)用含n的代数式表示本周前三天生产自行车的总数;
(2)该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,当n=100时,那么该厂工人这一周的工资总额是多少元?
(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,则这一周工人的工资与按日计件的工资哪一个更多?请说明理由.
“囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.
(1)用含有x、y的代数式表示右图中“囧”的面积;
(2)当y=,x=4时,求此时“囧”的面积.
化简或化简求值(每小题6分,共12分)
(1)|a-2|+(b+3)2=0,求3a2b-[2ab2-2(ab-1.5a2b)+ab]+3ab2的值;
(2)已知有理数a、b、c在数轴上的对应点如图所示,化简:|b-a|+|a+c|-2|c-b|.
某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:
方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。
方案2:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图的函数关系。
根据图象回答下列问题:
(1)方案1中每个包装盒的价格是多少元?
(2)方案2中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?
(3)请分别求出y1,、y2与x的函数表达式;
(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由。
|
阅读理解题: 如图,在△ABC中,AD是BC边上的中线,且AD=BC.
求证:∠BAC=90°.
证明:∵AD=BC,BD=CD=
BC,
∴AD=BD=DC,∴ADB和 ADC都是等腰三角形
∴∠B=∠BAD,∠C=∠CAD,
∵∠B+∠BAD+∠CAD+∠C=180°,
∴∠BAD+∠CAD=90°,即∠BAC=90°.
(1)此题实际上是直角三角形的另一个判定方法,请你用文字语言叙述出来.
(2)直接运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为1+,求这个三角形的面积.
【知识储备:勾股定理:在直角三角形中。两直角边的平方和等于斜边的平方。】