某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?
设每件商品降价x元.每天的销售额为y元.
(1)分析:根据问题中的数量关系.用含x的式子填表:
原价 |
每件降价1元 |
每件降价2元 |
… |
每件降价x元 |
|
每件售价(元) |
35 |
34 |
33 |
… |
|
每天售量(件) |
50 |
52 |
54 |
… |
(2)(由以上分析,用含x的式子表示y,并求出问题的解)
在正方形ABCD中,E是BC的中点,F为CD上一点,且,试判断△AEF是否是直角三角形?试说明理由.
某校为了解九年级学生的身体状况,在九年级四个班的160名学生中,按比例抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数统计如表;各班被测试人数占所有被测试人数的百分比如扇形图(九年四班相关数据未标出).
(1)九年四班中参加本次测试的学生的人数是多少?
(2)求本次测试获取的样本数据的平均数、众数和中位数;
(3)估计该校九年级“引体向上”次数6次以上(不含6次)的有多少人?
次数 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
人数 |
2 |
3 |
5 |
3 |
2 |
2 |
1 |
2 |
如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.
(1)求证:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
解方程:x2﹣4x=5.