如图,在平面直角坐标中,△ABC的三个顶点分别为A(―2,―1),B(―1,1)C(0,―2).
(1)点B关于坐标原点O对称的点的坐标为 ;
(2)将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C;
(3)求过点B1的反比例函数的解析式.
如图,抛物线 与 轴交于 、 两点,与 轴交于 点,已知 ,且 是抛物线上另一点.
(1)求 、 的值;
(2)连接 ,设点 是 轴上任一点,若以 、 、 三点为顶点的三角形是等腰三角形,求 点的坐标;
(3)若点 是 轴正半轴上且在抛物线内的一动点(不与 、 重合),过点 作 交抛物线的对称轴于 点.设 , 的面积为 ,求 与 之间的函数关系式.
如图,点 是正方形 的边 延长线上一点,连接 ,过顶点 作 ,垂足为 , 分别交 于 ,交 于 .
(1)求证: ;
(2)若点 为 的中点,求 的值.
某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.
(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;
(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?
一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是 .
(1)求袋中红球的个数;
(2)求从袋中任取一个球是黑球的概率.
如图,为了测得一棵树的高度 ,小明在 处用高为 的测角仪 ,测得树顶 的仰角为 ,再向树方向前进 ,又测得树顶 的仰角为 ,求这棵树的高度 .